The isolation of a gene that leads to salt tolerance in plants could improve farming productivity on the Canadian prairies and other areas of the world where crops are compromised by saline irrigation water. The gene encodes a transport protein – the Na+/H+ antiport – which prevents sodium ions from harming the cell and creates a balance of ions that draw water into the plant cell by osmosis. “By genetically engineering a plant to have this salt-management system, we have opened up the possibility of modifying economically important crops so that they may grow in saline conditions,” says plant biologist Eduardo Blumwald, who led the group of graduate students – Gilad Aharon and Maris Apse and postdoctoral fellow Wayne Snedden – that discovered the gene. Using Arabidopsis thaliana, a small salt-sensitive plant that grows rapidly, researchers cloned the gene coding for the antiport and modified the plant to overproduce the antiport protein. The genetically modified plants showed sustained growth even when watered with high salt concentrations, while the normal plants deteriorated with the addition of more salty water.
Recent Posts
Fighting for Justice
In her latest documentary, filmmaker Nisha Pahuja tackles a most difficult topic – sexual assault
Rogers Foundation Gives $90 Million to Usher in New Era in Cardiac Care
Gift will enable the Ted Rogers Centre for Heart Research to expand its research into heart failure – and save lives
Solving a Climate Puzzle, One Tree Ring at a Time
A natural archive reveals how Canada’s arctic climate has changed over the past 1,000 years